It is natural that the drag of the plate at the limit remains the same, while the magnitude of the reverse flow
may be fairly arbitrary but remain within the limits 0 < § < n/[2(n + 4)1, i.e., be bounded above by the nffros!
value. If h ~ c@ (@ >2) and ¢ — 0, then 5, =0, d, — .

We thank G. I. Taganov for initiating this investigation.
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USE OF THE MODEL OF A SECOND DISSIPATIVE LAYER
AND A WAKE TO DESCRIBE QUASISTEADY CAVITATIONAL
FLOW ABOUT A FLAT PLATE

G. I. Taganov UDC 532.527

The model of a second dissipative layer and a wake in [1] was used for steady flow of a viscous incom~
pressible fluid about a flat plate within a large range of angles of attack ayp < @ < 90° [2]. Comparison of the
relations cx =f(a) and ¢, =f(w) obtained in [2] (see [3] also) with experimental data showed that the model under-
estimates cx and cy in this range by about 15%. This underestimation was explained in [2] by the fact that the
distinctly nonsteady flow seen under experimental conditions is replaced by a quasisteady flow in the model.
Moreover, the model does not consider the energy associated with pulsative motion in the near wake, which
was directly confirmed experimentally in [4]. The suppression of nonsteady pulsations behind a flat plate (the
experimentally-fixed reduction in the frequency of vortex shedding) in a flow at an angle @ = 90° through the use
of a splitter plate of roughly chord length located along the symmetry plate of the flow in the separation zone
also leads to a reduction in cx by about 15% at the limit, i.e., to as close an agreement between the theory and
experiment as can be expected from a hydrodynamic model. If we consider that the problem of theoretically
determining the drag of a flat plate located perpendicular to an incoming flow has attracted the attention of
physicists and hydrodynamicists for the last two centuries, then the success of the model of a second dissi-
pative layer and wake in regard to the solution of this problem offers hope and grounds for use of the model to
solve a related hydrodynamic problem (the subject of the present investigation) — theoretical determination of
the resistance force acting on a plate in a separated cavitational flow as a function of the determining param-
eter —the cavitation number Q = 2(p, — pc)/p\z?=° (pc is the pressure in the cavity behind the plate}.

There arises the question of the need for a new (energy) approach to an old hydrodynamic problem which
was theoretically described by the middle of the present century by any of four mathematical models. While
differing somewhat from each other at Q = 0, at @ — 0 these models approach the classical Helmholtz —Kirchhoff
model ¢y = 27/ (T +4) ~ 0.88 and are in fair agreement with the experimental data in the range of cavitation
numbers 0 < Q < 1.0.

Let us discuss the considerations which motivated us to develop a new approach.

First, it has long been known that separated cavitational flow is nonsteady and that it is not possible to
construct a steady flow of an incompressible fluid which can reliably describe the flow observed experimen-
tally at Q = 0 without contradicting physical reality. Since the well-known mathematical models of flow about
a plate at Q = 0 are steady-state models, the drag values obtained from them can, strictly speaking, be regarded
only as conditional. This conditionality is due to the effect of other bodies artificially placed in the flow on the
test body in the Ryabushinskii and Zhukov—Roshko models and to the effect of the flow on other sheets of the
Riemann surface in the Efros and Tulin models.

Secondly, the well-known mathematical models ignore the existence of a fluid wake with lost momentum
behind the body —cavity system. Thus, the theory loses the feedback which is present in a cavitational flow be-
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tween the displacement thickness, momentum thickness, and drag coefficient, preventing an unbounded (in theory)
increase in ¢y with an increase in Q.

The significance of these considerations compels an explanation. This is particularly true in regard to
the conditionality of cx in the Efros scheme, where its value can be determined by means of the momentum
conservation equation.

1. As is known [5], the use of the momentum conservation equation in the Efros scheme of cavitational
flow about a symmetrical cylindrical body makes it possible to determine the force Xy acting on the body in a
direction coincident with the direction of the velocity of the incoming flow v :

X; = 0g(ve + V). 1.1)

Here, q is the rate of flow of the fluid entering the reverse flow per unit of time (§ =év,; 6 is the thickness of
the reverse flow); v; is the velocity of the fluid at the boundary of the cavitly and the reverse flow and is linked
with the determining parameter of the problem Q by a relation which follows from the Bernoulli equation v, /v, =
(Q + 1)1/ %; the subscript J indicates that the force X is determined from the momentum equation.

The quantity X can be written as the sum of two terms
XJ = X, + Xa.

The first term represents the reaction of a sink of the capacity q located in an infinite, plane-parallel flow of
an incompressible fluid. The second term represents the reactive force of a reverse flow moving counter to
the main flow. Thus, Efros flow about the body is equivalent to a fixed system consisting of a sink receiving
fluid from all sides and a reactive nozzle directing fluid into the sink with a constant velocity in one direction —
counter to the flow.

Now let us determine the force Xy acting on this system on the basis of the law of energy conservation:
the work of the force Xg per unit time should be equal to the increment of the kinetic energy of the fluid in the
reverse flow corresponding to this time if the system moves with a constant velocity v in still fluid away from
the system. The increment in the kinetic energy of the reverse flow is equal to pq (v, + vc)2 /2, so that

X Ve = 04(Ve + V0)Y/2,
from which ’

(Uoo + v‘c)z

Xp=pg=5—. (1.2)
We can obtain the relationship between X and Xy from (1.1) and (1.2):

Xp/X; = (4 + 02, vo= velvee (1.3)

It can be seen from (1.3) that Xg =Xy only at Vc =1, 1l.e., at Q =0. At Q= 0, Xg > Xy, and their difference in-
creases with an increase in Q.

It follows from Galileo's principle that the force Xy would be invariant in the transition from a coordinate
system moving with the system to a coordinate system connected with the quiescent fluid. Thus, it is possible
for Xy and Xy to be different in the last case only when, along with the work of the force Xy, there is an addi-
ticnal source of energy Ep introduced into the system and the energy conservation law must be written as

XiVeo + Ep = pq(ve + vo%/2.
Using (1.1), we determine the additional energy as ER = pq(v = v2)/2.

Thus, the work of the force Xy ensures only the formation of a reverse flow with the velocity v, while
acceleration of the fluid in this flow from v, to v occurs as a result of introduction of ER from the second
sheet of the Riemann surface in the Efros model. Thus, the force Xy acting on the body in the Efros model
cannot be regarded as the external drag of the isolated body X. It is an internal force, as in the Ryabushinskii
and Zhukov—Roshko models. In the latter, although flows also occurs on one sheet of the Riemann surface, it
forms not an isolated body but a system of bodies which includes additional model bodies.

2. We will examine the need to account for the effect of the displacing action of the wake behind the body—
cavity system on the global flow, which determines q in the reverse flow and, in accordance with (1.1) and (1.2)
determines Xy and Xy, for fixed values of vg.
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To account for the effect of the displacing action of the wake on the global flow with a reverse flow, we
introduce a new two-parameter flow scheme which differs from the one-parameter Efros scheme (parameter Q)
by also including the dependence of the global flow on a second parameter — the displacement thickness of the
wake d/b. The latter is modeled by two plane-parallel plates located symmetrically behind the body (Fig. 1).

In this scheme, the reverse flow is split info two individual flows. The total thickness of these two flows away
from the body will be designated as 6. It is evident that the new two-parameter family of flows is intermediate
between the one-parameter family of Efros flows and the one-parameter (parameter d) family of Zhukov-—
Roshko flows. The singularity method of S. A. Chaplyagin, used in [5] to find the complex potential for Efros
flow about a flat plate, was also used in [6] to find the complex potential for a new scheme of flow about such

a plate, perpendicular to the flow, at an infinitely distant point. The author of [6] also calculated the relation
for the thickness of the reverse flow 6 = f(d) for several values of vg =£(Q) (Fig. 3in [6]). AtV Ve =1(Q =0),
the total thickness of the reverse flow is independent of the displacement thickness of the wake (in this case,

an infinitely long cavity minimizes the mutual effect of individual flow regions); however, at vo > 1 (Q > 0), the
effect of the wake can be evaluated as a first-order effect: with a finite wake displacement thickness d, the
thickness of the reverse flow decreases to zero. These values of the parameters Vg and d corresponds to flow
by the Zhukovskii—Roshko scheme. Thus, the feedback coupling between the displacement thickness of the wake
and the total thickness of the reverse flow, determining the force acting on the plate in accordance with (1.1)
and (1.2), actually exists and is strengthened with an increase in Q.

3. We will theoretically determine the resistance force acting on a flat plate in a cavitational flow as a
function of Q. Above we explained the conditionality of the drag coefficients obtained in well-known steady-state
schemes of cavitational flow about bodies and the need to allow for the effect of the displacing action of the
wake on the global flow. Figure 2 shows a diagram of actual cavitational flow about a flat plate at Q > 0. Flow
at the end of the cavity (region 1) is nonsteady and of a strongly alternating character: it alternates between
flow regimes with a reverse flow and with destruction of the latter (by its mixing with the surrounding liquid).
In this region, a large part of the kinetic energy of the fluid of the reverse flow is dissipated and a wake (a re~
gion of fluid with lost momentum in the direction of the incoming flow) is formed. The displacing effect of the
wake influences the global potential flow.

In the cavitational modél of nonsteady flow, we assume that region 1 is characterized in part by dissipa-
tion of the entire increment (relative to the still fluid away from the body) of the kinetic energy of the fluid in
the reverse flow per unit time pq(v_ + VC)2 /2. Moreover, since (in contrast to the steady flow occurring in the
Efros scheme on two sheets of the Riemann surface) there is no supply of energy ER, the only energy source
remains the work of the resistance force of the body Xgv,. Then the law of energy conservation

X = pq(Ve + vc)/2 (3.1)
leads to the expression

Xg = 00V + V) 20, (3.2)

which coincides in form with (1.2). However, in (3.2), the thickness of the reverse flow § = q/v depends on
the displacement thickness of the wake 6. Thus, with a fixed value of v, Xy is a function only of 6% . On the
other hand, the connection between the res1stance force X acting on the body in an unbounded flow and the mo-
mentum thickness of the wake 6%*is given by a well-known relation which is also valid for actual cavitational
flow:

X = pu5 0 == pUios. (3.3)
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The closing condition of the model of a second dissipative layer and wake
X (65) = X (62) (3.4)

makes it possible to determine X and 6% with a fixed value of v,. Let us reduce (3.2)-(3.4) to dimensionless
form

Cx = 200 (3.6)
CxE (Sto) =Cx (530)1 (3.7)
£ 8. wx On za 81 2X 2 e s .
where 8= 33 Oe = %"; 80 = %"-; ey = 52—[7-; Cag = 975_; b is the characteristic dimension of the body.

Figure 3 shows Eq. (3.5) in the plane (¢, c.g 3*;) . The graph was constructed from the data in Fig. 3 in
[6] for flow about a flat plate with the chord b and a certain prescribed value of v,. Then the intersection of
this relation with the straight line (3.8) satisfies closing condition (3.7) and is the solution of the problem (lines
1 and 2 correspond to (cxE)7, =const =/ (8x), e = 25%).

Figure 4 shows the relation for the drag coefficient of a flat plate cx = £(Q) obtained by the above method.
Also shown for comparison is the familiar relation oxy = (Q) for a flat plate in the case of Efros flow (lines
4, 1).

It can be seen that at Q = 0 the model of the second dissipative layer and wake and the calculations by the
Efros scheme give identical values of the drag coefficient of a flat plate, coinciding with the classical Kirchhoff
result cx = 27 /(7 +4) ~ 0.88 (point 5). In the range 0 < Q = 1 (for which there is experimental data on cx for
a flat plate}, the model function CxJ =f(Q) deviates and is located below the linear relation Cxg = £(Q) calculated
from the Efros scheme. The experimental points turn out to be intermediate between these two results. At
Q > 1, the model function cy =f(Q) — in contrast to the function cxy =£(Q), which increases without limit with
an increase in Q — asymptotically approaches the finite limit cx =2.0 at @ — « (line 2).

The existence of a finite limit for the drag coeificient of the plate in the case of cavitational flow [a value
which (ox = 2.0) coincides exactly with the empirically well-established drag coefficient for a flat plate in a non-
cavitational separated flow in a one-phase fluid] sheds light on the existence of a relationship between cavita-
tional and non-cavitational separated flows. This is shown by the comparison in Fig. 4 of the model function
ey =£(Q) with the value ¢y =1.7 =const (line 3), which was also obtained in [2] with the model of a second dis-
sipative layer and wake for cavitational separated flow of a one-phase incompressible liquid about a plate.

The closeness of the model function cy =£(Q) at Q =3 to the model value cx = 1.7 and the experimental values
of cx seen for separated flow of a one-phase liquid about a plate, along with the "white spot” observed in ex-
periments with cavitational flow about hodies at Q > 1.4, makes it possible to conclude that in this range of
cavitation numbers, the quasistationary cavity is destroyed and the flow changes to the nonsteady separated
flow characteristic of a one-phase liquid.

Thus, the energy approach developed here makes it possible to reliably describe cavitational flow about
bodies throughout the range of cavitation numbers from the classical limit (Q = 0) to the physical limit at which
destruction occurs. Of course, this description cannot be made with the same completeness as is achieved in
the mechanical approach (in cases where it can be used). Thus, the energy approach used in the model of a
second dissipative layer and wake makes it possible to find the resistance force acting on the body but does not
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give information on the distribution of pressure and shear stress on the surface of the body. However, it is
better to have a physically reliable value of the drag coefficient of the body and to not know the pressure dis-
tribution on it than to have the pressure distribution but to know that it is conditional in character.
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REYNOLDS STRESS DISTRIBUTION DURING LONGITUDINAL
FLOW AROUND A DIHEDRAL ANGLE

K. Greichen and V. I. Kornilov UDC 532.526.4

Study of the structure of so-called complex turbulent flows that cannot be computed sufficiently accurately
by methods of the classical theory of a thin shear layer continues to evoke great interest in hydro-aeromechan-
ics. A typical example of shear flows of this kind is the three-dimensional flow along a line of intersection of
two surfaces forming a dihedral angle. It is known that similar flows are encountered in different engineering
applications, for instance, in the area of wing juncture with the fuselage or other flying vehicle elements, in
turbines, and also in prismatic channels.

A whole series of theoretical and experimental researches is devoted o the study of the structure of tur-
bulent flows in angular configurations, in particular, features of the development and interaction of boundary
layers {1, 2], the extent of the spatial domain in the transverse direction [2, 3], the secondary flow structure [4],
and the influence of different factors on the nature of these complex flows [3, 5]. However, complete informa-
tion on not only the role of the average velocities but also on the distribution of all the Reynolds stress tensor
components is necessary for a correct description of the fundamental physical phenomena in such flows. Sim-
ilar information is also necessary for further perfection and development of the computation methods, and in
particular, for the development of a model of turbulence.

A wide variety of techniques exists for measuring the Reynolds stress component by the hot wire sensor
of a thermoanemometer [6]. Analysis of these methods in application to the flow in a dihedral angle shows that
the measurement method by a thermoanemometer sensor with a single oblique filament rotating around the
housing axis [7] has a number of irrefutable advantages. In particular, it does not require the introduction of
any assumptions about the effective velocity in the modified King law, nor also preliminary information about
the direction of the stream velocity vector and is released from the necessity to use multichannel apparatus.

Earlier the authors found approval for the mentioned method for the case when the axis of sensor rotation
made a right angle with the free stream velocity vector. The maximal error of the Reynolds stress here is
on the order of 25-30% of the upper measured value of the appropriate component. It turns out that the funda-
mental source of errors is due to conditions of aerodynamic sensor interaction with the stream.
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