
It is  na tura l  that  the d rag  of the plate  at the l imi t  r e m a i n s  the s ame ,  while the magnitude of the r e v e r s e  flow 
may  be f a i r ly  a r b i t r a r y  but r e m a i n  within the l imi t s  0 < ~ n/[2(n + 4)], i .e . ,  be bounded above by the "l~fros" 
value. I f h  ~ c(~ (~ >2) and c ~ 0 ,  t h e n 6 .  = 0 , d . - - * ~ .  

We thank G. I. Taganov fo r  ini t iat ing th is  invest igat ion.  
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The model  of a second d iss ipa t ive  l aye r  and a wake in [1] was used for  s teady flow of a v iscous  incom-  
p r e s s i b l e  fluid about a f iat  p la te  within a l a rge  range  of angles  of a t t ack  ~ c r  < c~ < 90 ~ [2]. Compar i son  of the 
r e l a t ions  Cx = f(c~) and Cy = f(~) obtained in [2] (see [3] also) with exper imen ta l  data  showed that  the model under -  
e s t i m a t e s  Cx and Cy in this  r ange  by about 15~e This  underes t ima t ion  was explained in [2] by the fac t  that  the 
dis t inct ly  nonsteady flow seen  under  expe r imen ta l  conditions is r ep laced  by a quas i s t eady  flow in the model .  
Moreove r ,  the model  does not cons ide r  the ene rgy  assoc ia ted  with pulsa t ive  mot ion in the  nea r  wake,  which 
was d i rec t ly  conf i rmed  exper imenta l ly  in [4]. The suppres s ion  of nonsteady pulsa t ions  behind a f la t  p la te  (the 
exper imen ta l ly - f ixed  reduct ion in the f requency of vor tex  shedding) in a flow at an angle ~ = 90 ~ through the use  
of a sp l i t t e r  p la te  of rougMy chord length located along the s y m m e t r y  plate  of the flow in the separa t ion  zone 
a lso  leads to a reduct ion in Cx by about 15% at the l imit ,  i .e . ,  to as c lose  an a g r e e m e n t  between the theory  and 
expe r imen t  as can be expected f r o m  a hydrodynamic  model .  If we cons ider  that  the p rob lem of theore t i ca l ly  
de te rmin ing  the d rag  of a f lat  p la te  located pe rpend icu la r  to an incoming flow has  a t t rac ted  the attention of 
phys ic i s t s  and hydrodynamic i s t s  for  the l a s t  two cen tur ies ,  then the succe s s  o f  the model  of a second d i s s i -  
pat ive  l aye r  and wake in r ega rd  to the solution of th is  p r o b l e m  of fe r s  hope and grounds fo r  use of the model  to 
solve a re la ted  hydrodynamic  p rob l em  (the subjec t  of the p re sen t  investigation) - t h e o r e t i c a l  de te rmina t ion  of 
the r e s i s t a n c e  fo rce  acting on a plate  in a s epa ra t ed  cavitat ional  flow as a function of the de te rmin ing  p a r a m -  
e t e r  - t h e  cavi ta t ion n u m b e r  Q = 2(p~ o - pc)/PV~ (Pc is  the p r e s s u r e  in the cavi ty  behind the plate).  

The re  a r i s e s  the question of the need for  a new (energy) approach  to an old hydrodynam':c p rob lem which 
was theore t i ca l ly  desc r ibed  by the middle of the p r e sen t  century  by any of four ma themat i ca l  models .  While 
di f fer ing somewhat  f r o m  each o ther  at Q ~ 0, at Q - .  0 these  models  approach  the c l a s s i ca l  H e l m h o l t z - K i r c h h o f f  
model c x = 2w/ (~  + 4) _~ 0.88 and a re  in f a i r  a g r e e m e n t  with the exper imenta l  data  in the range  of cavi tat ion 
number s  0 < Q < 1.0. 

Le t  us d i scuss  the cons idera t ions  which mot iva ted  us to develop a new approach.  

F i r s t ,  it has  long been known that s epa ra t ed  cavi ta t ional  flow is nonsteady and that  it i s  not poss ib le  to 
cons t ruc t  a s teady  flow of an i ncom pres s i b l e  fluid which can r e l i ab ly  desc r ibe  the flow obse rved  e x p e r i m e n -  
ta l ly  at Q r 0 without contradic t ing phys ica l  rea l i ty .  Since the well-known ma themat i ca l  mode~s of flow about 
a pla te  at Q g 0 a r e  s t e ady - s t a t e  mode l s ,  the d r ag  values  obtained f r o m  them can, s t r i c t l y  speaking,  be r eg a rd ed  
only as conditional.  This  conditionality is due to the effect  of o ther  bodies  a r t i f ic ia l ly  p laced  in the flow on the 
t e s t  body in the Ryabushinski i  and Zhukov -R oshko  models  and to the effect  of the flow on o the r  shee ts  of the 
Riemann  su r face  in the t~fros and Tulin models .  

Secondly, the well-known ma thema t i ca l  models  ignore  the exis tence  of a fluid wake with los t  momen tum 
behind the b o d y - c a v i t y  s y s t e m .  Thus,  the theory  loses  the feedback  which is  p r e sen t  in a cavitat ional  flow be-  
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tween the displacement  thickness,  momentum thickness,  and drag  coefficient,  preventing an unbounded (in theory) 

inc rease  in c x with an increase  in Q. 

The signillicance of these considerat ions compels  an explanation. This is par t icu lar ly  t rue  in regard  to 
the conditionality of Cx in the t~fros scheme,  where its value can be determined by means of the momentum 
conservat ion equation. 

1. As is ]mown [5], the use of the momentum conservat ion equation in the t~fros scheme of cavitational 
flow about a syn~net r ica l  cyl indrical  body makes it possible to determine the force  Xj acting on the body in a 
di rect ion coincident with the direct ion of the velocity of the incoming flow v~: 

x:,  = pq(~,. + v~). (1.1) 

Here,  q is the rate  of flow of the fluid entering the r eve r se  flow per  unit of t ime (q = 6 vc; 6 is the thickness of 
the r e v e r s e  flow); v c is the velocity of the fluid at the boundary of the cavity and the r e v e r s e  flow and is linked 
with the determining p a r a m e t e r  of the problem Q by a relat ion which follows f rom the Bernoulli  equation Ve/V ~ = 
(Q + 1)1/2; the .r J indicates that the force  X is determined f rom the momentum equation. 

The quantity X can be writ ten as the sum of two t e r m s  

X. r=  X I +  X,.. 

The f i r s t  t e rm represen t s  the reac t ion  of a sink of the capaci ty q located in an infinite, p lane-paral le l  flow of 
an incompress ib le  fluid. The second t e r m  represen t s  the react ive  force of a r eve r s e  flow moving counter to 
the main flow. Thus, ~ f ros  flow about the body is equivalent to a fixed sys tem consist ing of a sink receiving 
fluid f rom all sides and a react ive  nozzle d i rec t ing fluid into the sink with a constant velocity in one direction - 
counter to the flow. 

Now let us determine the force X E acting on this  sys tem on the basis of the law of energy conservation: 
the work of the force X E per  unit t ime should be equal to the increment  of the kinetic energy of the fluid in the 
r e ve r s e  flow corresponding  to this t ime if the sys tem moves  with a constant velocity v~ in still fluid away f rom 
the sys tem.  The increment  in the kinetic energy of the r e v e r s e  flow is equal to pq (v~ + vc )2/2, so that 

XF.v,~ = pq(v~ + re)'/2, 

f rom which 

x ~  = pq (~ + %V 
2v~ " (1.2) 

We can obtain the relat ionship between X E and Xj f rom (1.i) and ('1.2): 

Z J X ~  = (i + ~c)72, v c :  Vc~p~, (1.3) 

It can be seen f rom (1.3) that X E = Xj only at ~c = 1, i.e., at Q = 0. At Q ~ 0, X E > Xj, and thei r  difference in-  
c r e a s e s  with ~t  increase  in Q. 

It follows f rom Gali leo 's  principle that the force  X j  would be invariant  in the t ransi t ion f rom a coordinate 
sys t em moving with the sys t em to a coordinate sys tem connected with the quiescent fluid. Thus, it is possible 
for  Xj and X E to be different in the last  case only when, along with the work of the force  Xj ,  there  is an addi- 
t ional source  of energy E R introduced into the sys tem and the energy conservat ion law must  be writ ten as 

X.rvoo + E R ---- pq(uo. -'r- Vc)Z/2. 

Using (1.1), we determine the additional energy as E R = pq(v 2 - v2) /2 .  

Thus, the work of the force  Xj ensures  only the formation of a r e v e r s e  flow with the velocity v~o, while 
acce lera t ion  of the fluid in this flow f rom voo to v c occu r s  as a resu l t  of introduction of E R f rom the second 
sheet of the Riemann surface  in the t~fros model. Thus, the force  Xj acting on the body in the Efros  model 
cannot be regarded  as the external  drag of the isolated body X. It is an internal force,  as in the Ryabushinskii  
and Zhukov-Roshko  models.  In the lat ter ,  although flows also occurs  on one sheet of the Riemann surface,  it 
fo rms  not an isolated body but a sys t em of bodies which includes additional model bodies. 

2. We will examine the need to account for the effect of the displacing action of the wake behind t h e b o d y -  
cavity sys tem on the global flow, which de te rmines  q in the r e v e r s e  flow and, in accordance  with (1.1) and (1.2) 
de te rmines  Xj and X E for  fixed values of v c. 
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Fig.  1 
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Fig. 2 

To account for  the effect  of the d isplacing action of the wake on the global flow with a r e v e r s e  flow, we 
introduce a new t w o - p a r a m e t e r  flow scheme  which d i f fe rs  f r o m  the o n e - p a r a m e t e r  t~fros s cheme  (pa rame te r  Q) 
by also including the dependence of the global flow on a second p a r a m e t e r  - the d i sp lacemen t  th ickness  of the 
wake d /b .  The l a t t e r  is  modeled by two p l a n e - p a r a l l e l  p la tes  located s y m m e t r i c a l l y  behind the body (Fig. 1). 
In th is  s cheme ,  the r e v e r s e  flow is sp l i t  into two individual flows. The total  th ickness  of t hese  two flows away 
f r o m  the body will be designated as  6.  It is  evident  that  the new t w o - p a r a m e t e r  fami ly  of flows is  in te rmedia te  
between the o n e - p a r a m e t e r  fami ly  of l~fros f lows and the o n e - p a r a m e t e r  ( p a r a m e t e r  d) f ami ly  of Zhuko v -  
Roshko flows. The s ingular i ty  method of S. A. Chaplyagin,  used in [5] to find the complex potent ial  for  l~fros 
flow about a f la t  p la te ,  was a lso  used in [6] to find the complex potent ial  for  a new scheme  of flow about such 
a plate ,  pe rpend icu la r  to the flow, at_an infi_nitely dis tant  point.  The author of [6] also calcula ted the re la t ion  
for  the th ickness  of the r e v e r s e  flow 6 = f(d) for  s e v e r a l  va lues  of ~c = f(Q) (Fig. 3 in [6]). At ~c = 1 (Q = 0), 
the total  t h i c k n e s s  of the r e v e r s e  flow is independent of the d i sp lacemen t  th ickness  of the wake (in this  case ,  
an infinitely long cavi ty  m i n i m i z e s  the mutual  effect  of individual flow regions);  however ,  at ~c > 1 (Q > 0), the 
effect  of the wake can be evaluated as a f i r s t - o r d e r  effect: with a finite wake d i sp lacement  th ickness  d, the 
th ickness  of the r e v e r s e  flow d e c r e a s e s  to zero .  These  values  of the p a r a m e t e r s  ~c and d c o r r e s p o n d s  to flow 
by the Z h u k o v s M i - R o s h k o  scheme .  Thus,  the feedback  coupling between the d i sp lacemen t  th i ckness  of the wake 
and the to ta l  th ickness  of the r e v e r s e  flow, de te rmin ing  the fo rce  acting on the plate  in accordance  with (1.1) 
and (1.2), actual ly  ex i s t s  and is  s t rengthened with an i n c r e a s e  in Q. 

3. We will theore t i ca l ly  de t e rmine  the r e s i s t a n c e  fo rce  act ing on a f la t  p la te  in a cavitat ional  flow as a 
function of Q. Above we explained the condit ionali ty of the d rag  coeff icients  obtained in well-known s t eady - s t a t e  
s c h e m e s  of cavitat ional  flow about bodies and the need to allow for  the effect  of the d isp lac ing action of the 
wake on the global flow. F igure  2 shows a d i a g r a m  of a c tua l  cavi tat ional  flow about a f lat  p la te  at Q > 0. Flow 
at  the end of the cavi ty  (region 1) is nonsteady and of a s t rongly  a l te rna t ing  cha rac t e r :  i t  a l t e rna tes  between 
flow r e g i m e s  with a r e v e r s e  flow and with des t ruc t ion  of the l a t t e r  (by i ts  mixing with the sur rounding  liquid). 
In this region,  a l a rge  p a r t  of the kinetic energy  of  the fluid of the r e v e r s e  flow is  d iss ipa ted  and a wake (a r e -  
gion of fluid with los t  m om en t um  in the d i rec t ion  of the incoming flow) is fo rmed .  The displacing effect  of the 
wake inf luences  the global potent ial  flow. 

In the cavi tat ional  model  of nonsteady flow, we a s s u m e  that  reg ion  1 is cha r ac t e r i z ed  in pa r t  by d i s s ipa -  
t ion of the en t i re  i n c r e m e n t  ( r e l a t ive  to the s t i l l  fluid away f r o m  the body) of the kinetic energy  of the fluid in 
the r e v e r s e  flow p e r  unit t ime  pq (voo + re)2/2. Moreover ,  s ince (in con t ras t  to the s teady flow occur r ing  in the 
~ f r o s  s cheme  on two shee ts  of the Riemann  surface)  t he r e  is no supply of energy  E R, the only energy  sou rce  
r e m a i n s  the work  of the r e s i s t a n c e  fo rce  of the body XEV ~. Then the law of energy  conserva t ion  

X~vo~ = pq(voo + vc)2/2 

leads to the exp re s s ion  

(3.1) 

= 2 0  X E pq(v= ~- Vc) /.v=, (3.2) 

However ,  in (3.2), the th ickness  of the r e v e r s e  flow 6 = q /v  c depends on w h i c h  coincides  in f o r m  with (1.2). 
the d i sp lacement  th ickness  of the wake 6 * .  Thus,  with a fixed value of v c, X E is  a function only of 6"~. On the 
o ther  hand, the connection between the r e s i s t a n c e  fo rce  X acting on the body in an unbounded flow and the m o -  
mentum th ickness  of the wake 6*00* is  given by a wel l -known re la t ion  which is  a lso  valid for  actual  cavi tat ional  
flow: 

2 * *  2 * X = pVooSoo = pvooS~. (3.3) 
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Fig. 4 

The closing condition of the model of a second dissipative layer  and wake 

Z * 

makes  it possible to determine X and 
fo rm 

(3.4) 

6* with a fixed value of v c. Let us reduce (3.2)-(3.4) to dimensionless 

c=  = 26~; (3.6) 

(3. v) 

s - ,  - * *  6*2 = 2 L .  
where ~ =  T; 6~ = y ;  5o = T ;  r pv~b' c=z pv~b' b is the charac te r i s t i c  dimension of the body. 

F igure  3 shows Eq. (3.5) in the plane (c~, c~E; - ~ ) .  The graph was constructed f rom the data in Fig. 3 in 
[6] for flow about a flat plate with the chord b and a cer ta in  p resc r ibed  value of Vc. Then the intersect ion of 
this relat ion with the s traight  line (3.6) sat isf ies  closing condition (3.7) and is the solution of the problem (lines 
1 and 2 cor respond to (cxE)~c =eonst  = ] (~**), c~ = 28~). 

Figure  4 shows the relat ion for the drag coefficient of a fiat  plate c x = f(Q) obtained by the above method. 
Also shown for' compar i son  is the famil iar  relat ion CxJ = f(Q) for a flat plate in the case of t~fros flow (lines 
4, i). 

It can be seen that at Q = 0 the model of the second dissipative l ayer  and wake and the calculations by the 
]~fros scheme give identical values of the drag coefficient of a flat plate, coinciding with the c lass ica l  Kircb_hoff 
resul t  Cx = 2 v / ( ~  + 4) ~ 0.88 (point 5). In the range 0 < Q _< 1 (for which there  is experimental  data o n e x  for 
a flat plate), the model function Cxj = f(Q) deviates and is located below the l inear  relat ion Cxj = f(Q) calculated 
f rom the ]~fros scheme.  The experimental  points turn  out to be intermediate  between these two resul ts .  At 
Q > 1, the model function c x = f(Q) - in cont ras t  to the function exj  =f(Q), which inc reases  without l imit  with 
an increase  in Q - asymptot ica l ly  approaches the finite l imit  Cx = 2.0 at Q - .  oo (line 2). 

The existence of a finite l imit  for  the drag coefficient of the plate in the case of cavitationai flow [a value 
which (e x = 2.0) coincides exactly with the empir ica l ly  well-establ ishod drag coefficient for a flat plate in a non- 
cavitational separated flow in a one-phase  fluid] sheds light on the existence of a relat ionship between cavi ta-  
tional and non-cavitat ional  separated flows. This is shown by the compar ison  in Fig. 4 of the model function 
c x = f(Q) with the value c x = 1.7 = const (line 3), which was also obtained in [2] with the model of a second dis-  
sipative layer  and wake for cavitational separated flow of a one-phase  incompress ib le  liquid about a plate. 
The c loseness  of the model function ex -- f(Q) at Q = 3 to the model value Cx = 1.7 and the experimental  values 
of c x seen for separa ted  flow of a one-phase  liquid about a plate, along with the "white spot" observed in ex-  
per iments  with cavitational flow about bodies at Q > 1.4, makes  it possible to conclude that in this range of 
cavitation numbers ,  the quasis ta t ionary cavity is destroyed and the flow changes to the nonsteady separated 
flow charac te r i s t i c  of a one-phase  liquid. 

Thus, the energy  approach developed here  makes  it possible to re l iably descr ibe  eavitational flow about 
bodies throughout the range of cavitation numbers  f rom the c lass ica l  l imit  (Q = 0) to the physical  l imit  at which 
destruct ion occurs .  Of course ,  this descr ipt ion cannot be made with the same completeness  as is achieved in 
the mechanical  approach (in cases  where it can be used). Thus, the energy approach used in the model of a 
second dissipative layer  and wake makes it possible to find the r e s i s t ance  force acting on the body but does not 
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give in format ion  on the dis t r ibut ion of p r e s s u r e  and s h e a r  s t r e s s  on the su r face  of the body. However ,  it i s  
be t te r  to have a phys ica l ly  re l iab le  value of the d rag  coeff icient  of the body and to not know the p r e s s u r e  d i s -  
t r ibut ion on it  than to have the p r e s s u r e  dis t r ibut ion but to know that  i t  is conditional in c h a r a c t e r .  

L I T E R A T U R E  C I T E D  

1. G . I .  Taganov,  "Second d iss ipa t ive  l aye r  and wake in v iscous  flow about a body," Uch. Zap. TsAGI, 1, 
No. 6 (1970). 

2. G . I .  Taganov,  "Model of c i rcu la t ion  nea r  a wing of infinite span  with one t ra i l ing  edge at high Reynolds 
numbers , "  P r ep r i n t / D i v i s i on  of Mechanics  of Inhomogeneous Media, Academy of Sciences  of the USSR, 
No. 5, Moscow (1980). 

3. G . I .  Taganov,  "Substantiat ion of the re la t ion  Il . . . .  2 ~* �9 used in a model of c i rcu la t ion  n e a r  a wing of ~VoO u 2o0 

infinite s p a n  with a sha rp  t ra i l ing  edge," Uch. Zap. TsAGI, 17, No. 5 (1986). 
4. C . J .  Apelt  and C. S. West ,  "The  ef fec ts  of wake sp l i t t e r  p la tes  on bluff-body flow in the range  104 < R < 

5 �9 104. Pt.  2," J .  Fluid Mech.,  71, Pt .  1 (1975). 
5. M . I .  Gurevich,  Theory  of J e t s  of an Ideal Fluid [in Russian] ,  Nauka, Moscow (1979). 
6. V . S .  Sadovskii ,  " T w o - p a r a m e t e r  fami ly  of fluid flows about a plate in the p r e s e n c e  of r e v e r s e  je t s , "  Zh. 

P r iM.  Mekh, Tekh. Fiz . ,  No. 3 (1987). 

R E Y N O L D S  S T R E S S  D I S T R I B U T I O N  D U R I N G  

F L O W  A R O U N D  A D I H E D R A L  A N G L E  

K.  G r e i c h e n  a n d  V .  I .  K o r n i l o v  

L O N G I T U D I N A L  

UDC 532.526.4 

Study of the s t ruc tu re  of so -ca l l ed  complex turbulent  flows that  cannot be computed suff icient ly accura te ly  
by methods of the c l a s s i ca l  t heo ry  of a thin shea r  l aye r  cont inues  to evoke g r e a t  i n t e r e s t  in h y d r o - a e r o m e c h a n -  
ics .  A typica l  example  of shear  flows of this kind is the t h r ee -d imens iona l  flow along a l ine of in te r sec t ion  of 
two s u r f a c e s  fo rming  a dihedral  angle. It  is  known that  s i m i l a r  flows a re  encountered in d i f ferent  engineer ing 
appl icat ions,  for  ins tance ,  in the a r e a  of wing juncture  with the fuse lage  or o ther  flying vehicle e lements ,  in 
tu rb ines ,  and also in p r i s m a t i c  channels .  

A whole s e r i e s  of t heo re t i ca l  and expe r imen ta l  r e s e a r c h e s  is  devoted to the s tudy of the s t r u c t u r e  of t u r -  
bulent  f lows in angular  configurat ions,  in pa r t i cu l a r ,  f e a tu re s  of the development  and in te rac t ion  of boundary 
l a y e r s  [1, 2], the extent  of the spat ia l  domain in the t r a n s v e r s e  d i rec t ion  [2, 3], the secondary  flow s t ruc tu re  [4], 
and the influence of di f ferent  f ac to r s  on the nature  of these  complex flows [3, 5]. However ,  comple te  i n fo rma-  
tion on not only the role  of the ave rage  veloci t ies  but also on the d is t r ibut ion of all the Reynolds s t r e s s  t en so r  
components  is  n e c e s s a r y  for  a c o r r e c t  desc r ip t ion  of the fundamental  physica l  phenomena in such  flows. S im-  
i l a r  in format ion  is also n e c e s s a r y  for  fu r the r  pe r fec t ion  and development  of the computat ion methods ,  and in 
pa r t i cu l a r ,  for  the deve lopment  of a model of  turbulence .  

A wide va r i e ty  of techniques ex i s t s  for  m e a s u r i n g  the Reynolds s t r e s s  component  by the hot wire  s en so r  
of a t h e r m o a n e m o m e t e r  [6]. Analys is  of these  methods in appl icat ion to the flow in a dihedral  angle shows that  
the m e a s u r e m e n t  method by a t h e r m o a n e m o m e t e r  s e n s o r  with a s ingle oblique f i l ament  ro ta t ing  around the 
housing axis [7] has  a num ber  of i r r e fu t ab l e  advantages .  In pa r t i cu l a r ,  it does not r equ i re  the introduction of 
any assumpt ions  about the effect ive veloci ty  in the modified King law, nor also p r e l i m i n a r y  informat ion  about 
the d i rec t ion  of the s t r e a m  veloci ty  vec tor  and is r e l ea sed  f r o m  the necess i ty  to use  mult ichannel  appara tus .  

E a r l i e r  the authors  found approval  for  the ment ioned method for  the case  when the axis  of s e n s o r  rotat ion 
made a r ight  angle with the f r ee  s t r e a m  veloci ty  vector .  The max ima l  e r r o r  of the Reynolds s t r e s s  he re  is 
on the o r d e r  of 25-30% of the upper  m e a s u r e d  value of the appropr i a t e  component.  It turns  out that the funda- 
menta l  sou rce  of e r r o r s  is due to conditions of ae rodynamic  s enso r  in terac t ion  with the s t r e a m .  

Ber l in .  Novos ib i rsk .  T rans la t ed  f r o m  Zhurnal  Pr ik ladnoi  Mekhaniki i Tekhnicheskoi  Fiziki ,  No. 3, pp. 
58-62, May-June ,  1987. Original  a r t i c l e  submit ted  March  24, 1986. 
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